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The number of independent compatibility equations in terms of stresses, involved in formulating the basic problem in the mechanics 
of deformable solids in terms of stresses in Nn, is the same as the number of Saint-Venant compatibility equations in R ~ and the 
number of independent components of the KrOner and Riemann-Christoffel tensors. The existence of the Bianchi identities 
does not reduce this number. Counterexamples are given to show that the number of Beltrami-Mitchell equations cannot be 
reduced from six to three in the classical and new formulations of the problem in terms of stresses for a three-dimensional body. 
© 2005 Elsevier Ltd. All rights reserved, 

1. T H E  N U M B E R  O F  I N D E P E N D E N T  S A I N T - V E N A N T  C O M P A T I B I L I T Y  
E Q U A T I O N S  

In order to represent the Saint-Venant compatibility equations [1] in compact form, one usually considers 
the Kr6ner incompatibility tensor [2]. In ~n this tensor is the object ~1 ~2~ -4} = inkE{2} of rank 2n - 4 
with Cartesian components 

l ] i l . . . i n  2J t . . . Jn-2  = • i l . . . i n  2 k l ~ ' j l . . ' J n - 2 r n p g l m ,  kp (1.1) 

w h e r e  Eit ... in is the Levi-Civita symbol in Rn and e 12~ is the strain tensor. Indeed, the vanishing of all 
comr~onents qi i : : o is a necessary and, for a simply-connected domain V, also a sufficient r 1 "" n-2J1 , . .  J n - z  
condition for the Cauchy problem 

u i . j + u j ,  i = 2eij ,  i , j  = 1 . . . . .  n (1.2) 

to be integrable. Thus, the number Nn of independent components (1.1) is the same as the required 
number of independent equations of strain compatibility. 

For n = 2 the Kr6ner tensor is a scalar (N2 = 1) and for n = 3 it is a symmetric rank 2 tensor 
(N3 = 6). It is obvious from definition (1.1) that, for any n,  the tensor ~1 ~ -4} is anti-symmetric in all 
pairs of its first n - 2 indices, and also of the last n - 2. Multiplying both sides of (1.1) by 
~-il ... i n_2qsEj l  ... Jn_2tr and summing over the 2n - 4 repeated indices, one readily obtains the following 
relations, equivalent to (1.1) 

2 R s q t r  =- Est,  qr  "1- 8 q r  ' s t  - ~'sr, q t  - Eqt ,  s r  = 0 (1.3) 

where R ~4} is the curvature tensor or the Riemann-Christoffel tensor, whose rank is 4 for any n. Its 
components admit of the classical symmetries 

Rsqtr = -Rqstr = -Rsqrt = Rtrsq (1.4) 
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and the Ricci identities 

Rsqtr + Rstrq + Rsrqt = 0 (1.5) 

Thus, the incompatibility tensor ~1 ~2~ -4} and the curvature tensor R {4} are dual tensors, and 
consequently have the same number of independent components. The geometrical meaning of the 
compatibility equations (1.3) is that a continuous medium in the unstrained and strained states belongs 
to a Euclidean space for which Rsqtr - O. 

The six equations (1.3) were obtained for three dimensions by Saint-Venant (1860). Later, Bussinesq 
(1871), Beltrami (1889), and Cesaro (1906) [3] proved their sufficiency for simply-connected domains V. 

It is obvious that in R n Eqs (1.3) may be split into three groups 
1. All the free indices s, q, t and r are different (this is the case beginning with n = 4). We shall not 

write down the relations obtained, but just calculate their number Nnl. By virtue of the symmetries (1.4) 
and the Ricci identities (1.5), we have 

4 
Nnl  = 3 C 4 - C n  = n ( n -  1 ) ( n -  2 ) ( n -  3 ) l 1 2  

2. Only one of the pair of free indices s, q is the same as one of the pair t, r (n -> 3). Then 

Nn2 = 3C3n = n ( n - 1 ) ( n - 2 ) / 2  

3. The pairs of indices s, q and t, r are identical and 

Nn3 = b ,  = n ( n - 1 ) / 2  

Finally, we have 

N n = Nnt  + Nn2 + Nn3 = n2(n 2 - 1)/12 (1.6) 

Since the first derivation of Eqs (1.3) [4], repeated discussions have been devoted to the problem of 
determining the independent equations among all groups and expressing the others in terms of these 
independent ones [5, 6] (see also the bibliography in [7]). An apparent argument is the fact that N~ for 
n > 2 is greater than the degree of over-determination b~ of the Cauchy system (1.2) (Nz  = b2 --- 1). 
In addition, Nn - n 4 as n increases, while b~ - n 2. Appeal has frequently been made to the Bianchi 
identities 

Rsqtr, p + Rsqrp, t + Rsqpt, r = 0 (1.7) 

which are easily rewritten in terms of three derivatives of the components eij. For n = 3, the number 
of independent identities (1.7) is just 3, which seems to dispose of the discrepancy N3 - b3 = 3, and 
their existence is therefore identified with the dependence of the six strain compatibility equations. 

It should be noted that as n increases, the number of Bianchi identities (1.7) increases as 
C2C 3 ~ n 5, which even formally does not resolve the discrepancy Nn - bn - n 4. At the same time, the 
identities (1.7) are differential constraints of the third order imposed on eij, not additional compatibility 
equations. 

Here is an illustrative example. Let the functionf(xl, . . . ,  x~) satisfy a system of n differential equations 

% - b f l b x  I = 0 . . . . .  q ) .  =- O f l O x .  = 0 (1.8) 

which is compatible and has the solution f -  const. In addition, all Eqs (1.8) are clearly independent 
(in the sense that deleting just one of them yields a non-equivalent system). The degree of over- 
determination of the system is n - 1. At the same time, n (n - 1)/2 independent identities (Pi,j - gJj, i = 0 
exist, which play the part of the identities (1.7), whose existence does not eliminate the discrepancy 
n - 1 and makes none of Eqs (1.8) dependent on the others. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  OF THE T H E O R Y  OF 
E L A S T I C I T Y  IN T E R M S  OF STRESSES 

Closely related to the foregoing discussion are questions of different formulations of the problem of 
the mechanics of deformable solids in terms of stresses. In what follows we take n = 3 and drop the 
superscripts indicating the ranks of the tensors e~2~, w~z} and @2}. 
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As is well known [8], the classical formulation of the static problem of the isotropic theory of elasticity 
in terms of stresses consists of solving, in a three-dimensional domain 1,1, the three equilibrium equations, 
which are, in vector form 

S - D i v ~ r + p F  = 0, r e  V (2.1) 

and the six Saint-Venant compatibility equations 

Ii(~) = 0, r e  V (2.2) 

where ~i is the Kr6ner incompatibility tensor with Cartesian components 

]]ij ---- EiklEjmpElm, kp (2.3) 

which follow from Eqs (1.1); the solution is also required to satisfy three static boundary conditions on 
the boundary 2 = V 

o . n  = p(0), r e Z  (2 .4)  

where pF and p(0) are given volume and surface loads, and ar and e are the tensors of stresses and small 
deformations, which are related by Hooke's law 

1 1 
= ~ S [ - 3 v t ~ I + ( l + v ) a l ,  ~ = ~tr~ (2.5) 

System (2.1), (2.2) is equivalent to the system of three equations (2.1) and the six Beltrami-Mitchell 
equations, written in tensor form as 

3 Grad(grade) + 2pDefF + lP_-~Vv(divF)I = 0, r e V (2.6) I - I - A a +  1 + v 

The solution of boundary-value problem (2.1), (2.2), (2.4) (or (2,1), (2.6), (2.4)) is unique i rE > 0 
and -1 < v < 1/2. The classical formulation (2.1), (2.6), (2.4) corresponds to the variational formulation 
for the Castigliano functional. This variational principle is the basis of the Filonenko-Borodich method 
for the approximate solution of the static problem of the theory of elasticity in terms of stresses [9]. 

Since Mitchell (1900) derived Eqs (2.6), which had in fact been obtained previously by Beltrami (1892) 
assuming zero volume forces, many investigators have tackled the problem of the over-determination 
of the classical formulation, since the number of Eqs (2.1) and (2.6) in the domain V is three times 
the number of unknown components of the tensor o'. At the same time, the number of boundary 
conditions (2.4) is only one third of the number of unknown functions. In that connection, it has been 
proposed that three of the nine equations (2.1), (2.6) (in different combinations) may be removed on 
the boundary Y,. 

These questions are of course in harmony with the question discussed in Section 1 of the number of 
independent Saint-Venant compatibility equations. The apparent over-determination is removed by a 
new formulation of the problem of the mechanics of deformable solids in terms of stresses, proposed 
by one of us [10, 11]. As applied to the isotropic theory of elasticity, it consists of finding the six 
components of the symmetric tensor ~r by solving the six equations (2.6) in the domain V, assuming 
the satisfaction on Y~ of the three boundary conditions (2.4) and the three conditions 

S = 0, r E Z  (2.7) 

This formulation differs from the classical one in that satisfaction of the equilibrium equations is 
required only on the boundary of the body (at infinity if the body is unbounded). The existence theorem 
for a solution of the problem of the theory of elasticity in terms of stresses has been proved for the first 
time, as well as its ellipticity; and a new variational principle has been formulated for a certain scalar 
operator depending on the stress gradient. 

However, attempts have been made in some publications to remove from the nine equations (2.1), 
(2.6) on the boundary of V not (2.7), but other triples, taken from the Beltrami-Mitchell equations 
(2.6). The most frequent among these triples are those corresponding to the three diagonal components 
of the tensor H or the three non-diagonal ones. 
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3. SOME C O U N T E R E X A M P L E S  

The following examples illustrate that the formulations obtained in that case are not equivalent to the 
classical formulation of the problem of the theory of elasticity in terms of stresses. To fix our ideas, let 
us assume that F - 0, choose a spherical system of coordinates {r; 0; (p}, and confine our attention to 
the case in which the stress field is independent of the meridional angle tp. Then 

1 1 
Sr  = (Irr, r + ~lJrO, 0 + ~ (2 (J r r  - (~00 - (~p(p + t~roCtg0)  

1 1 
SO = (~r0, r + FI~00, 0 + ~ ( ( l ~ 0 0 -  °t0t0)ctg0 + 3°~0) 

, ! S~ = ~ ,  ~ + r6O~,o + ( 3 ~ e  + 2%~ctg0) 

1 2 i n 2 0 ( ~  ' A ~ p  = ~ ( r ~ , ~ ) j + ~ r  osin0) o, ~ , ~ = r ,  0, q~ 

Exampl e  1. The problem is to solve the following six equations in the domain of the body 

S r = S O = S~ = O, Hro = Ho, P = H~,p = O, r E  V (3.1) 

in such a way that six conditions are satisfied on the boundary: the three static conditions (2.4) and the 
conditions 

Hrr = H00 = H ~  = 0, r ~ E  (3.2) 

The following stress field is a solution of problem (3.1), (2.1), (3.2) but not of problem (2.1), (2.6), 
(2.4) (or (2.6), (2.4). (2.7)). We take 

V = { r : r < R } ,  Z = { r : r = R }  (3.3) 

o o 0 
Pr = 3R4, P0 = P~ = 0, r ~ Z (3,4) 

and define, for examples 

IJrr = 3r 4 -  10Rr 3 + 10R2r 2 

t~0e = cy~ o = 9r 4 -  25Rr3+ 20R2r 2, C~p - 0 
(3.5) 

One can verity directly that Eqs (3.1) are satisfied throughout V, and the boundary conditions (2.4) 
with loads (3.4) are satisfied on the surface of the sphere (3.3). In addition, 

60 "r R)(7r 5 R ) ~ 0  Hrr = 6 0 ( r - R )  2+ ~ (  - 

H00 = H ~  = 6 0 ( r -  R) (3 r -  2R) ~ 0 

which means that conditions (3.2) are satisfied but conditions (2.6) are not. 

Example  2. The problem is to solve the following six equations in the domain of the body 

S r = S O = Sip = 0 ,  nrr  = HoO = H ~  = O, r ~ V (3.6) 

in such a way that the three static conditions (2.4) and the conditions 

Hro = Ho~ = Hr~ = O, r ~ y 

Hr0 = H0t 0 = Hr,  = 0, r ~  V, r ~ o o  
(3.7) 

are satisfied. We take (see Fig. 1) 
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Fig. 1 

V = { r : r > R ,  0 < 8 1 < 8 < 8 2 < r c } ,  Z = ZluZ2t , . )Z3 

Z t = {r: r =  R, 81 < 8 < 8 2 }  (3.8) 

Z 2 = { r : r > R ,  8 = S t } ,  Z 3 = { r : r > R ,  8 = 8 2 }  

o o o 
P,. = Po = Pq, = 0, r e Z  

(3.9) 

and present a stress field which solves problem (3.6), (2.4), (3.7) but not problem (2.1), (2.6), (2.4). 
Put 

(Yrr = (YO0 = ( Y e e  = (~rO -~ 0 
, 1  

3 ( r -  R_.))2f (3.10) 
sin 8 r2sin28 J r- 

where f(8) is some differentiable function, thereby satisfying Eqs (3.6). To satisfy conditions (3.7) and 
(3.9) on the surface ~ and at infinity, it is sufficient to take, for example, 

f (O) = (0--81)4(0--02) 4 (3.11) 

The explicit expressions for H,v = Acute and Hoe = A~0e are too cumbersome to present here. We 
note that the components H, v and Hoe evaluated from (3.11) are bounded in the domain V, since the 
whole polar axis sin0 = 0 does not belong to V, and they vanish on ~1, Z2, Z3 and at infinity. The 
components H,~ and Hoe of the tensor (2.6) do not vanish identically in the domain V. 

Thus, removal of the three "diagonal" or "non-diagonal" Beltrami-Mitchell equations on the boundary 
makes the formulation of the problem in terms of stresses non-equivalent to the classical formulation. 
Counterexamples can be presented analogously which in similar fashion illustrate the inadmissibility 
of removing all other triples of the nine equations (2.1), (2.6) on the boundary (except for the triple 
(2.1)). 
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